Formosa & Black Butte Mine Superfund Site Methylation of Mercury at Mining Sites

March 29, 2016

Mine Locations

Black Butte Mine Site Characteristics

Deposit: primarity cinnabar

Operation timeframe: 1890 to late 1960s

Mine: underground mine: surface waste rock & tailings

<u>Ore Processing</u>: elemental mercury was produced on the site by heating crushed ore in a furnace

Production: ~635,000 kg of Hg

Environmental Issues: High Hg content tailings located in and near stream channels. Elevated methylmercury (MeHg) levels in fish in downstream reservol.

Formosa Mine Site Characteristics

Mine type: Copper & Zinc

Operation timeframe: 1910 to1993

Mine: underground mine: surface waste rock & tailings

Environmental Issues

 Release ~19,000 m³/y of acid mine drainage to area streams, which contains up to 15 tons of dissolved copper, zinc, and other heavy metals

Streambed sediment and precipitate

Introduction to Mercury Methylation

Methylmercury is of concern due to its increased toxicity and ability to bioaccumulate

Mercury is methylated by some anaerobic bacteria

Main Factors Necessary for Methylmercury Production:

Source of bioavailable inorganic mercury
Microbial activity:

- Anoxic conditions
- Electron donors: organic carbon
- Electron acceptors: sulfate, ferric iron, etc

Site Aqueous Mercury Concentrations

Formosa Mine

Adit Water: Low THg: 3.0± 0.7 ng/L 41 ± 11% dissolved-phase Low MeHg: <0.03 ng/L High Sulfate: 2,245 ± 500 mg/L Low pH: 2-3 s.u. Low organic carbon: 2.1 ± 1.1

Black Butte Mine

Furnace Creek Water: High THg: $32,000 \pm 36,000$ ng/L (Max: 93,000 ng/L during storm events) $17 \pm 11\%$ dissolved Low MeHg: <0.001% MeHg Low Sulfate: 3.1 ± 0.9 mg/L Neutral pH: 6.8

Low organic carbon: 3.0 ± 1.4

Site Aqueous Mercury Concentrations

Formosa Mine

Adit Water:

Low THg: 3.0± 0.7 ng/L

Black Butte Mine

Furnace Creek Water:

High THg: 32,000 ± 36,000 ng/L

For comparison: USGS Mercury Streams Study (Scudder et al, 2009_

Parameter	Site grouping	Mean	Median	Std Dev	Min	Max	n	Units	Comparison
Methylmercury	All sites Sites in unmined basins Sites in mined basins	0.19 0.20 0.18	0.11 0.11 0.10	0.35 0.37 0.31	<0.010 <0.010 <0.010	4.11 4.11 2.02	337 257 80	ng/L	No significant difference
Total mercury	All sites Sites in unmined basins Sites in mined basins	8.22 2.96 23.5	2.09 1.90 3.79	32.8 5.29 62.1	0.27 0.27 0.48	446 75.1 446	336 250 86	ng/L	Mined > Unmined (p<0.0001)
Methyl/Total mercury	All sites Sites in unmined basins Sites in mined basins	7.08 7.46 5.87	4.60 5.35 2.37	8.18 6.72 11.6	0.02 0.19 0.02	81.5 46.8 81.5	328 249 79	Percent	Unmined > Mined (p<0.0001)

Downstream conditions

Formosa Mine

Relatively steep gradient stream systems

Well oxygenated; low potential for methylation

Black Butte Mine

Reservoir downstream of mine with wetlands Conditions conducive to MeHg production

